1,108 research outputs found

    Reconceptualising clinical handover: Information sharing for situation awareness

    Get PDF
    Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and / or other copyright holders. Users may download and / or print one copy of any article(s) in City Research Online to facilitate their private study or for non-commercial research. Users may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages. Versions of research The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper. Enquiries If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at [email protected]

    Water bath calorimetric study of excess heat generation in 'resonant transfer' plasmas

    Full text link
    Water bath calorimetry was used to demonstrate one more peculiar phenomenon associated with a certain class of mixed gas plasmas termed resonant transfer, or RT plasmas. Specifically, He/H2 (10%) (500 mTorr), Ar/H2 (10%) (500 mTorr), and H2O(g) (500 and 200 mTorr) plasmas generated with an Evenson microwave cavity consistently yielded on the order of 50% more heat than non RT plasma (controls) such as He, Kr, Kr/H2 (10%), under identical conditions of gas flow, pressure, and microwave operating conditions. The excess power density of RT plasmas was of the order 10 W / cm-3. In earlier studies with these same RT plasmas it was demonstrated that other unusual features were present including dramatic broadening of the hydrogen Balmer series lines, unique vacuum ultraviolet (VUV) lines, and in the case of water plasmas, population inversion of the hydrogen excited states. Both the current results and the earlier results are completely consistent with the existence of a hitherto unknown exothermic chemical reaction, such as that predicted by Mills, occurring in RT plasmas.Comment: 30 pages, 2 tables, 5 figure

    Effect of reducing the availability of magpie nest sites on duck nest success

    Get PDF

    OH rotational lines as a diagnostic of the warm neutral gas in galaxies

    Get PDF
    We present Infrared Space Observatory (ISO) observations of several OH, CH and H2O rotational lines toward the bright infrared galaxies NGC253 and NGC1068. As found in the Galactic clouds in SgrB2 and Orion, the extragalactic far-IR OH lines change from absorption to emission depending on the physical conditions and distribution of gas and dust along the line of sight. As a result, most of the OH rotational lines that appear in absorption toward NGC253 are observed in emission toward NGC1068. We show that the far-IR spectrum of OH can be used as a powerful diagnostic to derive the physical conditions of extragalactic neutral gas. In particular, we find that a warm (Tk~150 K, n(H2)< 5 10^4 cm^-3) component of molecular gas with an OH abundance of 10^{-7} from the inner <15'' can qualitatively reproduce the OH lines toward NGC253. Similar temperatures but higher densities (5 10^5 cm^-3) are required to explain the OH emission in NGC1068.Comment: 5 pages, 4 figures, accepted in ApJ Part I (2004, October 6
    corecore